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Abstract
In this paper a general method of factorization of Sturm–Liouville (SL)
operators is provided. A method to solve SL eigenvalue problems is presented.
New classes of exactly solvable potentials are obtained. The supersymmetry
and shape invariance approaches are generalized to the SL operators. It is
shown that the SL shape invariance potentials have an underlying algebraic
structure. This algebra is in general infinite dimensional. The condition of
finite algebra is obtained.

PACS numbers: 02.30.Tb, 03.65.Pm

1. Introduction

There has been great interest in the search for exactly solvable physical problems since the early
days of quantum mechanics (QM) [1–9]. Exactly solvable here means that the eigenvalues and
the eigenfunctions of the Hamiltonian of the system can be derived analytically in closed form.
Exactly solvable potentials are important for a number of reasons such as providing model
problems to analyse, to start perturbation theory expansions from, or to provide complete
sets of basis functions for solving real problems. Because of their major interest, many
methods have been developed in order to increase the number of exactly solvable potentials.
In this respect, the factorization method plays an important role [10–14]. This technique
was first introduced by Schrödinger [13], and later developed by Infeld and Hull [14]. The
interest of the subject has been renewed by the introduction of supersymmetry in quantum
mechanics (SUSY QM) by Witten [15] and the concept of shape invariance by Gendenshtein
[16]. An excellent review of these concepts has been made by Cooper et al [17]. It was
shown recently that the shape invariance condition [18, 19] has an underlying algebraic
structure and the associated Lie algebras were identified [20, 21]. It is worth mentioning
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that Lévai has developed, with connection to SUSY QM, a nice method of constructing
potentials for which the Schrödinger equation can be solved in terms of known special functions
[22, 23].

It is remarkable that although the factorization method, SUSY QM and shape invariance
concepts were developed to solve the eigenvalue problem related to the time-independent
Schrödinger equation, they are also some very powerful tools to solve some classes of second-
order differential equations of mathematical physics [24]. It has been shown that the standard
differential equations of mathematical physics, e.g., the hypergeometric-type equations, and
their associated equations have the properties of SUSY QM and shape invariance; by using
these properties, the solutions of these differential equations are expressed in the operator form
similar to that for the harmonic oscillator. Indeed, recently, Jafarizadeh and Fakhri [25] have
developed a general method of factorization of associated differential equations and obtained
their shape invariance relation. Lorente [26] showed later that classical orthogonal polynomial
operators can be factorized by using the three-term recurrence relation and a consequence of
Rodrigues formulae. Cotfas [27], following Lorente’s idea, has obtained a factorization
of associated orthogonal polynomial operators, using a change of function relation and a
three-term recurrence relation. We have provided, in a previous work [28], a SUSY QM
type factorization of the Hamiltonians of the rigidly constrained triatomic molecular systems.
All the differential equations mentioned so far, as well as the time-independent Schrödinger
equation have a property in common: they fall into the class of (SL) equations [29–31].

The purpose of this paper is to provide a general method of factorization for the SL
operators and to extend to these operators Lévai’s method of constructing solvable potentials.
The motivation for this work is that many problems in quantum mechanics or mathematical
physics lead to SL differential equations and the SL operators are well known to be self-
adjoint [30]. This is the case of time-independent Schrödinger equations, hypergeometric-type
equations, etc. Furthermore, it is often possible to transform a second-order linear differential
equation into a SL equation. In addition, it is easy to find an associated potential of Schrödinger
type, corresponding to SL potentials, by making coordinate transformations.

This paper is organized as follows. In section 2, we briefly review the usual factorization
method and associated algebraic structures. In section 3, we provide a general method of
factorization of the SL operators. In section 4, we extend to Sturm–Liouville equations the
method given by Lévai to construct solvable potentials for Schrödinger equations. We end
with some conclusions in section 5.

2. Usual factorization method and associated algebras: an overview

In this section, we give a brief review of the concepts of the factorization method, SUSY QM,
shape invariance and set the notation we shall need in the following. Consider the one-
dimensional bound-state Hamiltonian (h̄ = 2m = 1)

Ĥ = −D2 + Ṽ (x), x ∈ I ⊂ R, (1)

where D ≡ d
dx

, I is the domain of the variation of x and the potential V̂ (x) is a real function,
which can have singularities only on the boundary points of I. Let us denote by En and �̃n

the eigenvalues and eigenfunctions of Ĥ , respectively. The factorization method consists
of writing Hamiltonian (1) as the product of two first-order mutually adjoint differential
operators Â and Â†. If the ground-state eigenvalue E0 and eigenfunction �̃0 are known, then
Hamiltonian (1) factorizes as [8]

Ĥ − E0 = Â†Â (2)
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where

Â = D + W̃ (x), Â† = −D + W̃ (x) (3)

and W̃ (x) = −D[ln(�̃0)].
SUSY QM begins with a set of two matrix operators, known as supercharges

Q̂+ =
(

0 Â†

0 0

)
, Q̂− =

(
0 0
Â 0

)
. (4)

They form the following superalgebra [17],

{Q̂+, Q̂−} = Ĥ SS, [Ĥ SS, Q̂
±] = (Q̂±)2 = 0, (5)

where the SUSY Hamiltonian Ĥ SS is given by

Ĥ SS =
[
Â†Â 0

0 ÂÂ†

]
=

[
Ĥ 1 0
0 Ĥ 2

]
. (6)

In terms of the Hermitian supercharges

Q̂1 = (Q̂+ + Q̂−)/
√

2 and Q̂2 = (Q̂+ − Q̂−)/
√

2i,

the superalgebra takes the form

{Q̂i, Q̂j } = Ĥ SSδij , [Ĥ SS, Q̂i] = 0, i, j = 1, 2, (7)

δij being the Kronecker symbol. The operators Ĥ 1 and Ĥ 2 given by

Ĥ 1 = Â†Â = −D2 + Ṽ1 = −D2 + (W̃ 2(x) − W̃ ′(x)), (8)

Ĥ 2 = ÂÂ† = −D2 + Ṽ2 = −D2 + (W̃ 2(x) + W̃ ′(x)), (9)

are called SUSY partner Hamiltonians; the function W(x) is called the superpotential. The
potentials Ṽ1,2, called SUSY partner potentials, are related to the superpotential by the Riccati-
type equations

Ṽ1 = W̃ 2(x) − W̃ ′(x), Ṽ2 = W̃ 2(x) + W̃ ′(x), (10)

where the prime denotes the derivative with respect to x. In terms of W̃ (x) the SUSY
Hamiltonian Ĥ SS reads as

Ĥ SS = (−D2 + W̃ 2(x))112 + W̃ ′(x)σ3, (11)

where σ3 is the Pauli matrix and 112 is the 2 × 2 identity matrix.
Let us denote, for n � 0, by �̃(1)

n and �̃(2)
n the eigenfunctions of Ĥ 1 and Ĥ 2 with

eigenvalues E(1)
n and E(2)

n , respectively. It is straightforward to see that the eigenvalues of Ĥ 1

and Ĥ 2 are positive definite
(
E1,2

n � 0
)

and isospectral, i.e., they have almost the same energy
eigenvalues, except for the ground-state energy of Ĥ 1. Their energy spectra are related as [17]

En = E(1)
n + E0, E

(1)
0 = 0, �̃n = �̃(1)

n , n = 0, 1, 2, . . . ,

E(2)
n = E

(1)
n+1, E

(1)
0 = 0, n = 0, 1, 2, . . . ,

�̃(2)
n = [

E
(1)
n+1

](−1/2)
Â�̃

(1)
n+1,

�̃
(1)
n+1 = [

E(2)
n

](−1/2)
Â†�̃(2)

n .

(12)

Hence, if the eigenvalues and eigenfunctions of Ĥ 1 were known, one could immediately
derive the eigenvalues and eigenfunctions of Ĥ 2. However, the above relations only give the
relationship between the eigenvalues and eigenfunctions of the two partner Hamiltonians, but
do not allow us to determine their spectra. A condition of an exact solvability is known as the
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shape invariance condition; that is, the pair of SUSY partner potentials Ṽ1,2 is similar in shape
and differs only in the parameters that appear in them. Mathematically, the shape invariance
condition reads as [16]

Ṽ2(x; a1) = Ṽ1(x; a2) + R(a1), (13)

where a1 is a set of parameters and a2 is a function of a1(a2 = f (a1)) and R(a1) is the
non-vanishing remainder independent of x. In such a case, the eigenvalues of Ĥ 1 are given by
[16]

E(1)
n = R(a1) + R(a2) + · · · + R(an), (14)

with ak+1 = f k(a1), i.e., the functions f applied k times. The corresponding unnormalized
eigenfunctions are given by [7]

�̃n(x; a1) �
n∏

p=1

Â†(x; ap)�̃0(x; an+1). (15)

The shape invariance condition (13) can be rewritten in terms of the factorization operators
defined in equations (3),

Â(a1)Â
†(a1) = Â†(a2)Â(a2) + R(a1), (16)

where a2 is a function of a1. Here, we consider only the translation class of shape invariance
potentials, that is the case where the parameters a1 and a2 are related as a2 = a1 + η [18] and
the potentials are known in closed form. The scaling class [19] is not treated here since the
potentials, in this case, can only be written as Taylor expansion.

Introducing a similarity transformation Tη that replaces a1 with a2 in a given operator
[20, 21]

T̂ηO(a1)T
−1
η = O(a1 + η) ≡ O(a2), (17)

and the operators

B̂+ = Â†(a1)T̂η, B̂− = T̂ †
η Â(a1), (18)

the Hamiltonian (1) can be factorized in terms of the new operators B̂± as

Ĥ − E0 = Â†(a1)A(a1) = B̂+B̂−. (19)

For the case of translation class of shape invariance potentials, the operator T̂η reads as

T̂η = exp

(
η

∂

∂a1

)
. (20)

Using the operator B̂+, the expression (15) of the eigenfunctions takes its simplest form

�̃n(x; a1) � B̂n
+�̃0(x; a1). (21)

The operators B± fulfil the commutation relations

[B̂−, B̂+] = R(a0), [B̂+,R(a0)] = {R(a1) − R(a0)}B̂+

[B̂+, (R(a1) − R(a0)) B̂+] = {[R(a2) − R(a1)] − [R(a1) − R(a0)]}B̂2
+,

(22)

and so on. In general, the operators in the commutation relations (22) and their Hermitian
conjugates form an infinite-dimensional algebra. One can show that those potentials where
En is given by [21]

En = βn2 + δn + γ (23)
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lead to a finite-dimensional algebra

[B̂+, B̂−] = R(a0), [B̂+,R(a0)] = 2βB̂+, [B̂−,R(a0)] = −2βB̂−. (24)

Algebra (24) is isomorphic to Heisenberg–Weyl algebra if β = 0. It is isomorphic to su(2) or
su(1, 1), respectively, if β > 0 or β < 0. Condition (23) is satisfied when R(an) is linear in
an. This condition is verified if the superpotential is of the form

W(x; an) = f (x)an + g(x). (25)

For R(an) to be linear in an and independent of x, the functions f (x) and g(x) must satisfy
the equations

ηf ′(x) − η2f 2(x) = β,

g′(x) − ηf (x)g(x) = δ

2
− β

a1

η
,

(26)

where R(an) = δ + β − 2a1
β

η
+ 2an

β

η
.

3. General method of factorization of SL operators

In this section, we extend, to SL equations, the concepts of factorization method, SUSY QM
and shape invariance developed to solve the Schrödinger equation and reviewed in the previous
section.

Consider the one-dimensional second-order differential equation:

H� = E�, �,� ′ ∈ ACloc(]a, b[) (27)

where

H = −σ(x)D2 − τ(x)D + V (x), (28)

E is constant, σ, τ and V are real functions defined on an open interval ]a, b[ ⊂ R and
ACloc(]a, b[) is the set of local absolute continuous functions given by

ACloc(]a, b[) = {f ∈ AC[α, β],∀[α, β] ⊂]a, b[, [α, β] compact},
AC[α, β] = {f ∈ C[α, β], f (x) = f (α) +

∫ x

α

g(t) dt, g ∈ L1[α, β]}.

The suitable Hilbert space is H = L2(]a, b[, ρ(x) dx) with the inner product defined by means
of a non-negative weight function ρ on ]a, b[:

〈u, v〉 =
∫ b

a

ū(x)v(x)ρ(x) dx, ∀u, v ∈ H, (29)

where ū is the complex conjugate of u. The domain of the operator H will be examined below.
If we choose the weight function ρ such that

[σ(x)ρ(x)]′ = τ(x)ρ(x), (30)

then the differential equation (27) can be reduced to the self-adjoint form [29]:

−[σ(x)ρ(x)� ′(x)]′ + [V (x) − E(x)]ρ(x)�(x) = 0, (31)

and operator (28) can be written in the equivalent form of SL operator [30]

H = 1

ρ(x)

(
− d

dx
p(x)

d

dx
+ q(x)

)
, (32)



376 M N Hounkonnou et al

where p(x) = σ(x)ρ(x) and q(x) = V (x)ρ(x). We require:

(i) p ∈ ACloc(]ab[), p′ ∈ L2
loc(]a, b[), p−1 ∈ L1

loc(]a, b[) positive and real-valued;
(ii) q ∈ L2

loc(]a, b[), real-valued;
(iii) ρ ∈ L1

loc(]a, b[), ρ−1 ∈ L∞
loc(]a, b[) positive and real-valued.

Equation (31), together with the following boundary condition:

σ(x)ρ(x)[ū(x)v′(x) − ū′(x)v(x)]|ba = 0, ∀ u, v ∈ H, (33)

is called a Sturm–Liouville system [29]. This boundary condition ensures the self-adjointness
of the operator H. Since we want our operator H to be self-adjoint, we take its domain on the
Hilbert space H as

D(H) = {u ∈ H, u, pu′ ∈ ACloc(]a, b[),Hu ∈ H},
p(x)[ū(x)v′(x) − ū′(x)v(x)]|ba = 0, ∀ u, v ∈ D(H).

(34)

It is clear that D(H) is dense in H since C∞
0 (]a, b[) ⊂ D(H). One can show that the operator

(H,D(H)) is self-adjoint [30].
Remark immediately that, when σ(x) and τ(x) are polynomials of at most second and

first degrees, respectively, and V (x) is a constant, we are in the case of hypergeometric-type
operators [32]. The case σ = ρ = 1 can be viewed as the model of one-dimensional particle
in the external potential V .

The purpose of this section is to factorize the SL operator (H,D(H)) in terms of two
first-order mutually adjoint differential operators. Let the first-order differential operator A be
defined by:

A = κ(x)[D + W(x)], (35)

with the domain:

D(A) = {u ∈ H, κu′ + κWu ∈ H}, (36)

where κ and W are real continuous functions on ]a, b[. We infer D(A) dense in H since
H 1,2(]a, b[, ρ(x) dx) is dense in H and H 1,2(]a, b[, ρ(x) dx) ⊂ D(H), where Hm,n(�) is the
Sobolev spaces of indices (m, n). We assume that the operator A is closed in H. The adjoint
operator A† of A is given by [30]:

D(A†) = {u ∈ H|∃ṽ ∈ H : 〈Au, v〉 = 〈u, ṽ〉 ∀u ∈ D(A)} , A†v = ṽ. (37)

The explicit expression of A† is given through the following theorem.

Theorem 3.1. Suppose the following boundary condition:

κ(x)ρ(x)u(x)v(x)|ba = 0, ∀ u ∈ D(A) and v ∈ D(A†), (38)

is verified. Then the operator A† can be written as

A† = κ(x) [−D + W(x) + α(x)] (39)

where α is a real continuous function defined by α(x) ≡ −D ln[κ(x)ρ(x)].

Proof. From the definition of the operator A and the inner product (29) we have:

〈Aū, v〉 ≡
∫ b

a

[κ(x)ū′(x) + κ(x)W(x)ū(x)]v(x)ρ(x) dx

= κ(x)ū(x)v(x)ρ(x)|ba −
∫ b

a

ū(x)(κ(x)v(x)ρ(x))′ dx

+
∫ b

a

κ(x)W(x)ū(x)v(x)ρ(x) dx
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= κ(x)ū(x)v(x)ρ(x)|ba +
∫ b

a

ū(x)κ(x)

[
−D + W(x) − κ ′(x)

κ(x)
− ρ ′(x)

ρ(x)

]
v(x)ρ(x) dx

= 〈ū, A†v〉 for any u ∈ D(A), v ∈ D(A†). �

Let H1 and H2 be the product operators A†A and AA†, respectively, with the corresponding
domains

D(H1) = {u ∈ D(A), v = Au ∈ D(A†) and A†v ∈ H},
D(H2) = {u ∈ D(A†), v = A†u ∈ D(A) and Av ∈ H}. (40)

Remark that

H 1,2 (]a, b[, ρ(x) dx) ⊂ D(A) ⊂ D(A†).

Then

D(H1),D(H2) ⊃ H 2,2(]a, b[, ρ(x) dx).

We infer then that D(H1) and D(H2) are dense in H. The following theorem gives additional
conditions to subject to the functions κ and W so that the operator H factorizes in terms of A

and A†.

Theorem 3.2. Suppose that

(i) κ and α are related to σ and τ as:

κ2 = σ ; κ(κ ′ − κα) = τ ; (41)

(ii) the function W verifies the Riccati-type equation:

V − E0 = σ(W 2 − W ′) − τW. (42)

Then the operators H1,2 are self-adjoint, and:

H1 = A†A = H − E0 = −σD2 − τD + σ(W 2 − W ′) − τW,

H2 = AA† = −σD2 − τD + σ(W 2 + W ′) − (τ − σ ′)W + κ(κα)′.
(43)

Proof. The operators A†A and AA† are self-adjoint since A and A† are mutually adjoint and
A is closed with D(A) dense in H. A straightforward computation gives

A†A = −κ2D2 − κ(κ ′ − κα)D + κ2(W 2 − W ′) − κ(κ ′ − κα)W,

AA† = −κ2D2 − κ(κ ′ − κα)D + κ2(W 2 + W ′) + κ(κ ′ + κα)W + κ(κα)′.

Equations (43) are readily deduced from the above equations using equations (41) and (42).
�

Let us remark that identification (41) is equivalent to relation (30) and the quantity α can also
be expressed as α = κ ′

κ
− τ

σ
. We can rewrite the operators H1,2 as

H1 = A†A = −σD2 − τD + V1,

H2 = AA† = −σD2 − τD + V2,
(44)

where

V1 = σ(W 2 − W ′) − τW,

V2 = σ(W 2 + W ′) − (τ − σ ′)W + κ(κα)′.
(45)

It clearly appears that the factorization method is extended straightforwardly to Sturm–
Liouville operators. The operators A,A† and H1,H2 are equivalent to Â, Â† and Ĥ 1, Ĥ 2,
respectively, for σ = 1 and τ = 0. Equations (45) are the Riccati-type equations relating the
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partner potentials to the superpotential and are equivalent to equations (10) for σ = 1 and
τ = 0. One can construct here also a superalgebra HSS by means of supercharges defined in
the same way as in the previous section. Expression (11) of the superalgebra takes here the
form

HSS = [−σ(x)D2 − τ(x)D + σ(x)W 2(x) − τ(x)W(x) + 1
2 (σ ′(x)W(x) + (κ(x)α(x))′)

]
112

+
[
σ(x)W ′(x) + 1

2 (σ ′(x)W(x) + (κ(x)α(x))′)
]
σ3. (46)

The SUSY partner Hamiltonians H1,2 are here also isospectral. The spectra of H and H1,2 are
related by equations (12) rewritten for appropriate operators and eigenfunctions. The concept
of shape invariance is naturally valid here and almost all the equations related to this concept
obtained for Schrödinger equations are applicable to SL equations. Equations (26) become
here

σ(x)(2ηf ′(x) − 2η2f 2(x)) + ηf (x)τ ′(x) = 2β,

θ(x) + 2σ(x)(g′(x) − 2ηf (x)g(x)) + τ ′(x)(g(x) − η

2 f (x)) + τηf (x) = δ − 2 β

η
a1.

(47)

In the next section, we will use a simple method developed by Lévai [22] to construct several
classes of SL exactly solvable problems with shape invariance potentials.

Let us remark that the SL operator (28) can be related to the Schrödinger-type operator.
Indeed, if we make the change of variable x = x(t) such that dx/dt = κ(x(t)) and define the
new functions

�̃n(t) =
√

κ(x(t))ρ(x(t))�n(x(t)), (48)

then equation (27) turns to an equation of the Schrödinger type

− d2

dt2
�̃n(t) + Ṽ �̃n(t) = En�̃n(t), (49)

where

Ṽ (t) =
[
V (x) +

1

2

τ(x)(κ(x)ρ(x))′ + κ2(x)(κ(x)ρ(x))′′

κ(x)ρ(x)
− 3

4

κ2(x)(κ(x)ρ(x))′2

(κ(x)ρ(x))2

]∣∣∣∣
x=x(t)

.

The factorization of the associated hypergeometric-type operator [27]

Hm = −σ(x)D2 − τ(x)D + Vm(x), (50)

where

Vm(x) = m(m − 2)

4

σ ′2(x)

σ (x)
+

mτ(x)

2

σ ′(x)

σ (x)
− 1

2
m(m − 2)σ ′′(x) − mτ ′(x), (51)

proposed recently by Cotfas [27] is also recovered here. Indeed, taking Wm = −mκ ′/κ , one
can show that Hm = A

†
mAm + λm where Am = κ[D + Wm], A†

m = κ[−D + Wm + α], λm =
−m/2(m − 1)σ ′′ − mτ ′ and the partner Hamiltonian is H

†
m = Hm+1 = AmA

†
m + λm.

The above formalism also includes the interesting case of the Hamiltonians of the form

H = −D[G(x)D] + V (x), G(x) > 0, x ∈]a, b[, (52)

acting in a Hilbert space L2(]a, b[, dx). Indeed, if we take σ(x) = G(x) and τ(x) = G′(x)

then ρ(x) = 1, κ(x) = √
G(x) and α(x) = −1/2D[ln G(x)]. Therefore

H = −G(x)D2 − G′(x)D + V (x),

H1 = −G(x)D2 − G′(x)D + V1(x) = A†A,

H2 = −G(x)D2 − G′(x)D + V2(x) = AA†,

(53)
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where

A =
√

G(x) [D + W(x)] , A† =
√

G(x) [−D + W(x) − 1/2D(ln G(x))] , (54)

and the potentials read as

V1(x) = G(x)[W 2(x) − W ′(x) − D(ln G(x))W(x)],

V2(x) = G(x)[W 2(x) + W ′(x)] − 1

2

(
G′′(x) − 1

2

G′2(x)

G(x)

)
.

(55)

We end this section by giving two examples which show how to construct a new exactly
solvable potential from an old one.

3.1. Example of Legendre SL-type operator

Consider the operator

H = −(1 − x2)D2 + 2xD + V (x), (56)

where V is a continuous function on ]−1, 1[. It is a Sturm–Liouville operator with the
parameters of Legendre orthogonal polynomials σ(x) = 1 − x2, τ (x) = −2x, ρ(x) = 1,
x ∈]−1, 1[. This operator is called the associated Legendre operator [33] when V (x) =

m2

1−x2 ,m ∈ N . We shall examine below the case m = 1. The factorization gives

H − E0 = H1 = A†A = −(1 − x2)D2 + 2xD + V1,

H2 = AA† = −(1 − x2)D2 + 2xD + V2,

A = √
1 − x2(D + W), A† = √

1 − x2

(
−D + W +

x

1 − x2

)
,

V1 = (1 − x2)(W 2 − W ′) + 2xW, V2 = (1 − x2)(W 2 + W ′) +
1

1 − x2
.

(57)

In the case of associated Legendre operator (m = 1): V (x) = 1
1−x2 , we obtain:

(i) Superpotential:

W(x) = 1 − cx

(x2 − 1)(x − c)
, |c| > 1. (58)

(ii) Partner potentials:

V1(x) = 1

1 − x2
, V2(x) = 2

1 − cx

(c − x)2
, |c| > 1. (59)

(iii) Eigenvalues and eigenfunctions of H1 [33]:

E(1)
n = n(n + 1), ψ(1)

n = P 1
n (x), (60)

where the P m
n ,m � n are the associated Legendre polynomials [33].

(iv) Eigenvalues and eigenfunctions of H2:
We deduce the eigenvalues and eigenfunctions of H2 from those of H1 using the
relations (12):

E(2)
n = (n + 1)(n + 2), n = 0, 1, 2, . . .

ψ(2)
n = 1√

(n + 1)(n + 2)

1

(x − c)
√

1 − x2

[
(c − x)(n + 2)P 1

n (x)

+
(
1 + x(x + nx − c(n + 2))P 1

n+1(x)
)]

, n = 0, 1, 2, . . . .

(61)
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3.2. Example of Laguerre SL-type operator

We consider here the operator

H = − d

dx

[
x

d

dx

]
+ V (x), x ∈ ]0, +∞[, (62)

where V is a continuous function on ]0, +∞[. It is a Sturm–Liouville operator with the
parameters of Laguerre orthogonal polynomials σ(x) = x, τ (x) = 1, ρ(x) = 1, x ∈ ]0,∞[.
This operator is called Laguerre operator of order m ∈ N [31], when V (x) = Vm(x) =
m − 1/2 + x/4 + m2/4x. We shall examine below the case m = 1 in Vm. The factorization
gives

H − E0 = H1 = A†A = −xD2 − D + V1,

H2 = AA† = −xD2 − D + V2,

A = √
x(D + W), A† = √

x

(
−D + W − 1

2x

)
,

V1 = x(W 2 − W ′) − W, V2 = x(W 2 + W ′) +
1

4x
.

(63)

For the Laguerre operator of order m = 1 , V (x) = x
4 + 1

4x
and we obtain:

(i) Superpotential :

W(x) = −1 + x + exp(x + c)(x − 1)

2x(exp(x + c) − 1)
, c > 0. (64)

(ii) Partner potentials:

V1(x) = x

4
+

1

4x
, V2(x) = x(3 + cosh(c + x)) − 2 sinh(c + x)

4(cosh(c + x) − 1)
, c > 0. (65)

(iii) Eigenvalues and eigenfunctions of H1 [31]:

E(1)
n = n + 1, ψ(1)

n = x
1
2 exp

(
−x

2

)
L1

n(x), (66)

where the Lm
n ,m � n are the generalized Laguerre polynomials [33].

(iv) Eigenvalues and eigenfunctions of H2:
We deduce the eigenvalues and eigenfunctions of H2 from those of H1 using the
relations (12):

E(2)
n = n + 2, n = 0, 1, 2, . . . ,

ψ(2)
n = 1√

n + 2

exp
(− x

2

)
exp(c + x) − 1

((1 − exp(c + x))xL2
n(x)

− (1 + exp(c + x)(x − 1))L1
n+1(x)), n = 0, 1, 2, . . . .

(67)

Let us note that the ψ(1)
n fulfil the following recurrence relation,

(n + 1)ψ
(1)
n+1(x) − (2n + 2 − x)ψ(1)

n (x) + (n + 1)ψ
(1)
n−1(x) = 0, (68)

which can be straightforwardly deduced from the recurrence relation satisfied by the
generalized Laguerre functions Lα

n(x) [32]

(n + 1)Lα
n+1(x) − (2n + α + 1 − x)Lα

n(x) + (n + α)Lα
n−1(x) = 0. (69)
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4. Construction of solvable potentials

Lévai, in a nice paper [22], has developed an elegant method, related to SUSY QM, of
constructing solvable potentials for which the Schrödinger equation can be solved exactly in
terms of special functions. In this section, we use the same method to construct new exactly
solvable potentials for SL equations. Let us start with the SL eigenvalue problem

−σ(x)
d2ψ

dx2
− τ(x)

dψ

dx
+ (V − E)ψ(x) = 0, (70)

characterized by the coefficients σ and τ and the potential V . We search for potentials for
which the eigenfunctions ψ are expressed as:

ψ(x) = f (x)F (y(x)), (71)

where F is a special function of the variable y satisfying the equation

d2F

dy2
+ Q(y)

dF

dy
+ R(y)F (y) = 0. (72)

Inserting (71) in equation (70) and after a straightforward computation, we obtain

d2F

dy2
+

[
y ′′

y ′2 + 2
f ′

fy ′ +
τ

σy ′

]
dF

dy
+

[
E − V

σy ′2 +
f ′′

f y ′2 +
τ

σ

f ′

f y ′2

]
F(y) = 0. (73)

Identifying (73) with (72), we deduce[
y ′′

y ′2 + 2
f ′

fy ′ +
τ

σy ′

]
= Q(y), (74)

V − E = −R(y)σy ′2 + σ
f ′′

f
+ τ

f ′

f
. (75)

Observing that f ′′
f

= (
f ′
f

)2
+

(
f ′
f

)′
, equation (75) can be rewritten as:

V − E = −R(y)σy ′2 + σ

((
f ′

f

)2

+

(
f ′

f

)′)
+ τ

f ′

f
, (76)

= −R(y)σy ′2 + σ(W 2 − W ′) − τW, (77)

where W = −f ′/f = −(ln f )′. From (77), it appears that this method is closely related to
the theory of SUSY QM factorization. Indeed, if the function R depends on an integer n such
that it vanishes for n = 0, that is R(y) ≡ R(y; n) = nγ (n; y), then we obtain the Riccati-type
equation (42)

V − E0 = σ(W 2 − W ′) − τW. (78)

W is the superpotential and f plays the role of ground-state eigenfunction. From (74) we
derive

f ′

f
= 1

2

(
y ′Q(y) − y ′′

y ′ − τ

σ

)
(79)

and the function f reads as

f � (y ′)−1/2 exp

(
1

2

∫ y(x)

Q(t) dt

)
exp

(
−1

2

∫ x τ (t)

σ (t)
dt

)
. (80)

Expression (80) differs from the corresponding one found by Lévai by the extrafunction term

fex = exp

(
−1

2

∫ x τ (t)

σ (t)
dt

)
. (81)
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Introducing (79) in (76), we obtain the expression

V − E = σ

{
−1

4

τ 2

σ 2
− 1

2

( τ

σ

)′}

+ σ

{
−1

2

y ′′′

y ′ +
3

4

(
y ′′

y ′

)2

+ y ′2
(

−R(y) +
1

2

dQ

dy
+

1

4
Q2(y)

)}
. (82)

Apart from the coefficient σ , expression (82) differs from the corresponding Lévai relation by
the extrapotential term

Vex = σ

{
−1

4

τ 2

σ 2
− 1

2

( τ

σ

)′}
. (83)

Let us note that we can make coordinate transformation such that the coefficient σ becomes
σ = 1. Without loss of generality, we set in the following σ = 1. The expressions of V − E

and f become, respectively,

V − E = Vex − 1

2

y ′′′

y ′ +
3

4

(
y ′′

y ′

)2

+ y ′2
(

−R(y) +
1

2

dQ

dy
+

1

4
Q2(y)

)
, (84)

f � (y ′)−1/2 exp

(
1

2

∫ y(x)

Q(t) dt

)
fex, (85)

where Vex = − 1
4τ 2 − 1

2τ ′ and fex = exp
(− 1

2

∫ x
τ (t) dt

)
.

Let us now apply this formalism to Hermite Hn, generalized Laguerre Lα
n and Jacobi

P
(α,β)
n classical orthogonal polynomials. For these special functions, the coefficients R(y; n)

vanish for n = 0.

4.1. Exactly solvable potentials for Hermite orthogonal polynomials

For Hermite polynomials, the coefficients Q(y) and R(y) are

Q(y) = −2y, R(y) = 2n. (86)

Then

V − E = Vex +

{
−1

2

y ′′′

y ′ +
3

4

(
y ′′

y ′

)2

− y ′2(1 + 2n) − y ′2y2

}
, (87)

f � (y ′)−1/2 exp

(
−y2

2

)
fex. (88)

One term at least of the right-hand side of (87) must be constant to play the role of constant
energy E of the left-hand side. This constant term must contain the integer n. This condition
is achieved if we set y ′2 = constant or y ′2y2 = constant. y ′2 = constant implies that y(x)

must be linear in x. Using, here and in the following, the parameters of Dabrowska et al [18]
or Lévai [22], we have y(x) = (

ω
2

)2(
x − 2b

ω

)
. A possible solution of y ′2y2 = constant is

y(x) = 2C1/2x1/2.

4.2. Exactly solvable potentials for generalized Laguerre orthogonal polynomials

Here the coefficients Q(y) and R(y) are given by

Q(y) = α + 1

y
− 1, R(y) = n

y
. (89)
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Then

V − E = Vex − 1

2

y ′′′

y ′ +
3

4

(
y ′′

y ′

)2

− y ′2

y

(
1

2
(α + 1) + n

)
+

y ′2

4
+

1

4

y ′2

y2
(α2 − 1), (90)

f � (y ′)−1/2y(α+1)/2 exp
(
−y

2

)
fex. (91)

To have a constant term on the right-hand side of (90) we can set y ′2
y

= constant, y ′2 = constant

or y ′2
y2 = constant. These differential equations give, respectively, the following solutions

y(x) = 1
2ωx2, y(x) = e2x

(n+l+1)
and y(x) = 2B

a
exp(−ax).

4.3. Exactly solvable potentials for Jacobi orthogonal polynomials

The coefficients Q(y) and R(y) are given by

Q(y) = β − α

1 − y2
− (α + β + 2)

y

1 − y2
, R(y) = 1

1 − y2
n(n + α + β + 1). (92)

Then

V − E = Vex − 1

2

y ′′′

y ′ − 3

4

(
y ′′

y ′

)2

− y ′2

1 − y2
n(n + α + β + 1) − y ′2

(1 − y2)2

×
(

1

2
(α + β + 2) − 1

4
(β − α)2

)
− y ′2y

(1 − y2)2

(
1

2
(β − α)(β + α)

)

− y ′2y2

(1 − y2)2

(
1

4
−

(
α + β + 1

2

)2
)

(93)

f � (y ′)−1/2(1 + y)
β+1

2 (1 − y)
α+1

2 fex. (94)

To have a constant term on the right-hand side of (93) we can set y ′2
1−y2 = constant or

y ′2
(1−y2)2 = constant. These differential equations give, respectively, the following solutions
y(x) = {i sinh(ax), cosh(ax), cosh(2ax), cos(ax), cos(2ax)} and y(x) = {tanh(ax),

coth(ax),−i cot(ax)}.
For the next, we shall investigate the cases of specific SL problems characterized by the

coefficients σ, τ and the weight function ρ. Specific SL operators will differ each from other
by the extrapotential and extrafunction terms Vex and fex.

4.4. Expressions of Vex and fex for some particular SL problems

(i) Hermite SL-type operator
It corresponds to equation (70) with σ(x) = 1, τ (x) = −2x; the Hilbert space is
L2(R, exp(−x2) dx). For these parameters, we have

Vex = 1 − x2, fex = exp

(
x2

2

)
. (95)

(ii) Laguerre SL-type operator
In this case, σ(x) = x, τ (x) = µ + 1−x, and the Hilbert space is L2(R+, x

µ exp(−x) dx).
By making the change of variable x = r2/4, the coefficients become σ(r) = 1,
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τ(r) = 2µ+1
r

− r
2 . The Hilbert space becomes L2(R+, r

2µ+1 exp(−r2/4) dr). These
parameters lead to

fex = r−µ−1/2 exp(r2/8), Vex =
(

1

4
− µ2

)
1

r2
+

1

2
(µ + 1) − r2

16
. (96)

(iii) Legendre SL-type operator
Equation (70) rewrites with σ(x) = 1 − x2, τ (x) = −2x, and the Hilbert space is
L2(]−1, 1[, dx). By making the change of variable x = cos θ , we arrive at σ(θ) = 1,

τ (θ) = cot θ with the Hilbert space L2(]0, π [, sin θ dθ). We then obtain

fex = sin θ−1/2, Vex = − 1
4 cot2 θ − 1

2 csc2 θ. (97)

(iv) Chebyshev SL-type operator
σ(x) = 1 − x2, τ (x) = −x; the Hilbert space is L2(]−1, 1[, 1/

√
1 − x2 dx). By making

the change of variable x = sin θ , we get σ(θ) = 1, τ (θ) = 0 corresponding to the Hilbert
space L2(]0, π [, dθ). Thus, we have

fex = 1, Vex = 0. (98)

In tables 1, 3 and 5 we give the results of computation of exactly solvable potentials for
Hermite, Laguerre and Legendre SL problems, respectively. These potentials are similar to
the well-known exactly solvable potentials for Schrödinger equation. The only difference is
due to the presence of the extrapotential term. As for the Schrödinger case, these potentials
are shape invariant. Data on the superpotentials, the shape invariance parameters a1, a2 and
R(a1) are collected in tables 2, 4 and 6, while the corresponding shape-invariance algebras
are grouped in table 7. We can see that the shape invariance algebras of Coulomb (LII),
Rosen–Morse (PII), Eckart (PII) and Lévai (PII) potentials are infinite-dimensional; whereas
those of shifted oscillator (HI), three-dimensional oscillator (LI), Morse (LIII), Eckart (PI),
Pöschl–Teller I (PI) and Pöschl–Teller II (PI) potentials are finite.

The eigenvalues of the potentials in the tables are shifted by constant terms so that the
first eigenvalues vanish. The potentials are then those of the first partner potentials V1. The
potentials V are different from V1 by the constant terms. The eigenvalues En are different
from the eigenvalues E(1)

n by the same constant terms. For example, the Coulomb potential of
Laguerre SL-type operator in table 3 gives

V1(r) = −e2

r
+

l(l + 1)

r2
+

e4

4(l + 1)2
+

(
1

4
− µ2

)
1

r2
+

1

2
(µ + 1) − r2

16
,

E(1)
n = e4

4(l + 1)2
− e4

4(n + l + 1)2
,

ψ(1)
n = r−µ− 1

2 exp

{
r2

8
− y(r; l)

2

}
y(r; l)l+1L2l+1

n (y(r; l)), y(r; l) = re2

(n + l + 1)
,

V (r) = −e2

r
+

l(l + 1)

r2
+

(
1

4
− µ2

)
1

r2
+

1

2
(µ + 1) − r2

16
,

En = − e4

4(n + l + 1)2
, ψn = ψ(1)

n .

(99)
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Table 1. Solvable potentials associated with Hermite SL-type problem. We use the notation of
Dabrowska et al [18] and Lévai [22]. The ranges of the potentials are −∞ < x < +∞, 0 < r < ∞,

0 < aθ < π and 0 < 2aδ < π . (A = sa, B = λa for the case PI and LII and B = λa2 for case
PIII.) The data are those of the partner potentials V1. Those of V2 can be straightforwardly deduced
from (12).

Type of

potentials Variable y Potential V1 Eigenvalues E
(1)
n Eigenfunctions ψ

(1)
n

Shifted
( 1

2 ω
) 1

2
(
x − 2b

ω

)
ω2

4

(
x − 2b

ω

)2
+ 1 − x2 − ω

2 nω e( x2
2 − y2

2 )Hn(y)

oscillator HI

Three- ωr2

2
ω2r2

4 + l(l+1)

r2 + 1 − r2 − (l + 3
2 )ω 2nω e( r2

2 − y
2 )y(l+1)/2L

l+1/2
n (y)

dimensional
oscillator LI

Coulomb LII re2

(n+l+1)
l(l+1)

r2 − e2

r
+ 1 − r2 + e4

4(l+1)2
e4

4(l+1)2 − e4

4(n+l+1)2 e( r2
2 − y

2 )yl+1L2l+1
n (y)

Morse LIII 2B
a

e−ax B2 e−2ax − B(2A + a) e−ax A2 − (A − na)2 e( x2
2 − y

2 )ys−nL2s−2n
n (y)

+ A2 + 1 − x2

Morse PI i sinh(ax) (B2 − A2 − Aa) sech2(ax) A2 − (A − na)2 e
x2
2 −2λ arctan(tanh( ax

2 ))

+ B(2A + a) sech(ax) tanh(ax) × cosh−s (ax)

+ A2 + 1 − x2 ×P
(−iλ−s− 1

2 ,iλ−s− 1
2 )

n (y)

Rosen–Morse tanh(ax) −A(A + a) sech2(ax) A2 − (A − na)2 e( x2
2 − Bx

A−an
)

PII ā = λ
(s−n)

+ 2B tanh ax + B2

A2 − B2

(A−na)2 × coshn−s (ax)

+ A2 + B2

A2 + 1 − x2 ×P
(s−n+ā,s−n−ā)
n (y)

Rosen–Morse cosh(ar) (B2 + A2 + Aa) cosech2(ar) A2 − (A − na)2 e
r2
2 cosh−λ−s

(
ar
2

)
PI − B(2A + a) coth(ar) × sinhλ−s

(
ar
2

)
× cosech(ar) + A2 + 1 − r2 ×P

(λ−s− 1
2 ,−λ−s− 1

2 )
n (y)

Eckart PII coth(ar) A(A − a) cosech2(ar) A2 − (A + na)2 e
r2
2 − Br

A+an

− 2B coth ar + B2

A2 − B2

(A+na)2 × sinhs+n(ar)

+ A2 + B2

A2 + 1 − r2 ×P
(−s−n+ā,−s−n−ā)
n (y)

Eckart PI cos(aθ) (B2 + A2 − Aa) csc2 (aθ) (A + na)2 − A2 e
θ2
2 coss+λ

(
aθ
2

)
− B(2A − a) cot(aθ) csc(aθ) × sins−λ

(
aθ
2

)
+ 1 − θ2 − A2 × P

(s−λ− 1
2 ,s+λ− 1

2 )
n (y)

Poschl–Teller I cos(2aδ) A(A − a) sec2(aδ) (A + B + 2na)2 e
δ2
2 coss (aδ)

PI + B(B − a) csc2 (aδ) − (A + B)2 × sinλ(aδ)

+ 1 − δ2 − (A + B)2 ×P
(λ− 1

2 ,s− 1
2 )

n (y)

Poschl–Teller II cosh(2ar) −A(A + a) sech2(ar) −(A − B − 2na)2 e
r2
2 cosh−s (ar)

PI + B(B − a) cosech2(ar) + (A − B)2 × sinhλ(ar)

+ 1 − r2 + (A − B)2 ×P
(λ− 1

2 ,−s− 1
2 )

n (y)

Lévai PII −i cot(aθ) A(A + a) csc2(aθ) −A2 + (A − na)2 e( θ2
2 + Bθ

A−an
)

ā = λ
(s−n)

− 2B cot(aθ) + B2

A2 − B2

(A−na)2 × sin−s+n(aθ)

− A2 + B2

A2 + 1 − θ2 ×P
(s−n+iā,s−n−iā)
n (y)

The explicit expressions of the eigenfunctions and eigenvalues of the second partner potentials
V2 can be straightforwardly deduced from (12). We do not put the results on V2 potentials in
the tables as the expressions are too cumbersome and long. For the above Laguerre case, we



386 M N Hounkonnou et al

Table 2. Shape invariance data on solvable potentials for Hermite SL-type problem.

Type of
potentials Variable y Superpotential W a1 a2 R(a1)

Shifted
(

ω
2

) 1
2

(
x − 2b

ω

)
ωx
2 − x − b ω ω ω

oscillator HI

Three- 1
2 ωr2 ωr

2 − r − (l+1)
r

l l + 1 2ω

dimensional
oscillator LI

Coulomb LII re2

(n+l+1)
e2

2(l+1)
− r − (l+1)

r
l l + 1 e4

4(l+1)2 − e4

4(l+2)2

Morse LIII 2B
a

e(−ax) A − x − B e(−ax) A A − a A2 − (A − a)2

Morse PI i sinh(ax) A tanh(ax) A A − a A2 − (A − a)2

+ B sech(ax) − x

Rosen– tanh(ax) A tanh(ax) − x + B
A

A A − a A2 − (A − a)2

Morse PII + B2

A2 − B2

(A−a)2

Rosen– cosh(ar) A coth(ar) − r − B cosech(ar) A A − a A2 − (A − a)2

Morse PI
Eckart PII coth(ax) B

A
− A coth(ar) − r A A + a A2 − (A + a)2

+ B2

A2 − B2

(A−a)2

Eckart PI cos(aθ) B csc(aθ) − A cot(aθ) − θ A A + a (A + a)2 − A2

Pöschl– cos(2aδ) A tan(aδ) − δ − B cot(aδ) (A, B) (A + a, B + a) −(A + B)2

Teller I PI + (A + B + 2a)2

Pöschl– cosh(2ar) A tanh(ar) − r − B coth(ar) (A, B) (A − a, B + a) (A − B)2

Teller II PI − (A − B − 2a)2

Lévai PII −i cot(aθ) − B
A

− θ − A cot(aθ) A A − a −A2 + (A − a)2

+ B2

A2 − B2

(A−a)2

have

V2(r) = −e2

r
+

(l + 1)(l + 2)

r2
+

e4

2(l + 1)2
− e4

4(l + 2)2
+

(
1

4
− µ2

)
1

r2
+

1

2
(µ + 1) − r2

16
,

E(2)
n = e4

4(l + 2)2
− e4

4(n + l + 2)2
,

ψ(2)
n (r) = n + 1

2(l + 1)(n + l + 2)2
r

1
2 −µ exp

{
r2

8
− y(r; l + 1)

2

}
y(r; l + 1)l

×
{
L2l+1

n (y(r; l + 1)) − 2(l + 1)

n + 1
L2l+2

n+1 (y(x; l + 1))

}
.

(100)

5. Conclusions

The one-dimensional problems are useful for the investigation of solvable potential problems.
Multivariable problems are often analytically solvable when the conditions of variable
separability are fulfilled and the corresponding uncoupled differential equations generated
by this separation are algebraically solvable. The so-obtained one-variable problems can be
expressed in terms of SL problems (70). But, as the SL problems are not generally analytically
solvable, one used to transform them into the Schrödinger-type problems

Hψ = Eψ, H = −D2 + U, (101)
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Table 3. Solvable potentials for Laguerre SL-type problem.

Type of

potentials Variable y Potential V1 Eigenvalues E
(1)
n Eigenfunctions ψ

(1)
n

Three- 1
2 ωr2 1

4 ω2r2 + l(l+1)

r2 − (
l + 3

2

)
ω 2nω r−µ− 1

2 e( r2
8 − y

2 )

dimensional +
( 1

4 − µ2
) 1

r2 + 1
2 (µ + 1) − r2

16 × y
l+1
2 L

l+ 1
2

n (y)

oscillator LI

Coulomb LII re2

(n+l+1)
− e2

r
+ l(l+1)

r2 + e4

4(l+1)2
e4

4(l+1)2 r−µ− 1
2 e( r2

8 − y
2 )yl+1

+
( 1

4 − µ2
) 1

r2 + 1
2 (µ + 1) − r2

16 − e4

4(n+l+1)2 ×L2l+1
n (y)

Rosen– cosh(ar) (B2 + A2 + Aa) cosech2(ar) A2 − (A − na)2 r−µ− 1
2 e

r2
8 cosh−λ−s

(
ar
2

)
Morse −B(2A + a) coth(ar) cosech(ar) × sinhλ−s

(
ar
2

)
+ A2 +

( 1
4 − µ2

) 1
r2 ×P

(λ−s− 1
2 ,−λ−s− 1

2 )
n (y)

+ 1
2 (µ + 1) − r2

16

Eckart PII coth(ar) A2 + B2

A2 − 2B coth(ar) A2 − (A + na)2 r−µ− 1
2 e

r2
8 − Br

A+an

ā = λ
(n+s)

+ A(A − a) cosech2(ar) + B2

A2 − B2

(A+na)2 × sinhn+s (ar)

+
( 1

4 − µ2
) 1

r2 + 1
2 (µ + 1) − r2

16 ×P
(−s−n+ā,−s−n−ā)
n (y)

Eckart PI cos(aθ) −A2 + (B2 + A2 − Aa) csc2(aθ) (A + na)2 − A2 θ−µ− 1
2 e

θ2
8 coss+λ( aθ

2 )

−B(2A − a) cot(aθ) csc(aθ) × sins−λ
(

aθ
2

)
+

( 1
4 − µ2

) 1
θ2 + 1

2 (µ + 1) − θ2

16 ×P
(s−λ− 1

2 ,s+λ− 1
2 )

n (y)

Poschl– cos(2aδ) −(A + B)2 + A(A − a) sec2(aδ) (A + B + 2na)2 δ−µ− 1
2 e

δ2
8 coss (aδ)

Teller I PI + B(B − a) csc2(aδ) − (A + B)2 × sinλ(aδ)

+
( 1

4 − µ2
) 1

δ2 + 1
2 (µ + 1) − δ2

16 ×P
(λ− 1

2 ,s− 1
2 )

n (y)

Poschl– cosh(2ar) (A − B)2 − A(A + a) sech2(ar) (A − B)2 r−µ− 1
2 e

r2
8 cosh−s (ar)

Teller II PI −B(B − a) cosech2(ar) −(A + B − 2na)2 × sinhλ(ar)

+
( 1

4 − µ2
) 1

θ2 + 1
2 (µ + 1) − θ2

16 ×P
(λ− 1

2 ,−s− 1
2 )

n (y)

Lévai PII −i cot(aθ) A(A + a) csc2(aθ) −A2 + (A − na)2 e( θ2
8 + Bθ

A−an
)
θ−µ− 1

2

ā = λ
(s−n)

− 2B cot(aθ) − A2 + B2

A2 + B2

A2 − B2

(A−na)2 × sin−s+n(aθ)

+
( 1

4 − µ2
) 1

θ2 + 1
2 (µ + 1) − θ2

16 ×P
(s−n+iā,s−n−iā)
n (y)

where U is the corresponding effective potential function. Indeed, up until today, to our best
knowledge of the literature, almost all the works on exactly solvable problems are based on
equation (101). In this respect, it is well known that the concepts of SUSY QM factorization
and shape invariance are very powerful tools for solving problems of form (101). The more
simple the effective potential is, the easier it is to solve the Riccati equation which arises from
the factorization method. Unfortunately, due to the presence of an extrapotential term which
arises when one transforms a SL problem (70) into a Schrödinger problem (101), the resulting
effective potential does not usually factorize, i.e., the corresponding Riccati-type equation
cannot always be analytically solved. In the case when the resulting potential factorizes, it
does not often fulfil the suitable shape invariance condition. Moreover, the extrapotential term
restricts the possibility of fitting the resulting potential with a known solvable potential. Hence,
transforming a SL equation into a Schrödinger one does not always lead to exactly solvable
potentials. This justifies the necessity of searching for a direct method for analytically solving
SL problems. These series of works in progress aim at providing such a tool of constructing
the SL solvable potentials.
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Table 4. Shape invariance data on potentials for Laguerre SL-type problem.

Type of
potentials Variable y Superpotential W a1 a2 R(a1)

Three- 1
2 ωr2 ω

2 r − (l+1)
r

− r
4 + 1+2µ

2r
l l + 1 2ω

dimensional
oscillator LI

Coulomb LII re2

(n+l+1)
− (l+1)

r
− r

4 + 1+2µ
2r

+ e2

2(l+1)
l l + 1 e4

4(l+1)2 − e4

4(l+2)2

Rosen– cosh(ar) A coth(ar) − B cosech(ar) A A − a A2 − (A − a)2

Morse PI − r
4 + 1+2µ

2r

Eckart PII coth(ar) −A coth(ar) + B
A

A A + a A2 − (A + a)2

− r
4 + 1+2µ

2r
+ B2

A2 − B2

(A−a)2

Eckart PI cos(aθ) −A cot(aθ) + B csc(aθ) A A + a (A + a)2 − A2

− θ
4 + 1+2µ

2θ

Pöschl– cos(2aδ) A tan(aδ) − B cot(aδ) (A, B) (A + a, B + a) −(A + B)2

Teller I PI − δ
4 + 1+2µ

2δ
(A + B + 2a)2

Pöschl– cosh(2ar) A tanh(ar) − B coth(ar) (A, B) (A − a, B + a) (A − B)2

Teller II PI − r
4 + 1+2µ

2r
− (A − B − 2a)2

Lévai PII −i cot(aθ) − B
A

+ A cot(aθ) − θ
4 + 1+2µ

2θ
A A − a −A2 + (A − a)2

+ B2

A2 − B2

(A−a)2

Table 5. Solvable potentials for Legendre SL-type problem.

Type of

potentials Variable y Potential V1 Eigenvalues E
(1)
n Eigenfunctions ψ

(1)
n

Eckart PI cos(aθ) (B2 + A2 − Aa) csc2(aθ) (A + na)2 − A2 1/
√

sin θ coss+λ
(

aθ
2

)
−B(2A − a) cot(aθ) csc(aθ) × sins−λ

(
aθ
2

)
−A2 − 1

4

(
1 − 1

2 csc2 θ
) ×P

(s−λ− 1
2 ,s+λ− 1

2 )
n (y)

Poschl– cos(2aδ) A(A − a) sec2(aδ) (A + B + 2na)2 1/
√

sin δ coss (aδ)

Teller I PI + B(B − a) csc2(aδ) − (A + B)2 × sinλ(aδ)

− (A + B)2 − 1
4

(
1 − 1

2 csc2 δ
) × P

(λ− 1
2 ,s− 1

2 )
n (y)

Lévai PII −i cot(aθ) A(A + a) csc2(aθ) −A2 + (A − na)2 1/
√

sin θ e
Bθ

A−an sinn−s (aθ)

ā = λ
(s−n)

− 2B cot(aθ) − A2 + B2

A2 + B2

A2 − B2

(A−na)2 ×P
(s−n+iā,s−n−iā)
n (y)

− 1
4

(
1 − 1

2 csc2 θ
)

Table 6. Shape invariance data on potentials for Legendre SL-type problem.

Type of
potentials Variable y Superpotential W a1 a2 R(a1)

Eckart PI cos(aθ) −A cot(aθ) − B csc(aθ) + cot
(

θ
2

)
A A + a (A + a)2 − A2

Pöschl– cos(2aδ) A tan(aδ) − B cot(aδ) + cot
(

δ
2

)
(A, B) (A + a, B + a) (A + B + 2a)2

Teller I PI − (A + B)2

Lévai PII −i cot(aθ) − B
A

+ A cot(aθ) + cot
(

θ
2

)
A A − a −A2 + (A − a)2

+ B2

A2 − B2

(A−a)2

In this paper, we have extended the formulation of SUSY QM to SL operators. Namely, we
have provided a general method of factorization of these operators. The factorizing operators
fulfil a superalgebra. We have shown that the transformed operators B and B† associated with
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Table 7. Shape invariance algebras.

Type of potentials R(a0) Commutation relations Type of algebra

Shifted ω [B−, B+] = R(a0) Weyl–Heisenberg
oscillator HI [B±,R(a0)] = 0
Three-dimensional 2ω [B−, B+] = R(a0) Weyl–Heisenberg
oscillator LI [B±,R(a0)] = 0

Coulomb LII e4

4l2
− e4

4(l+1)2 [B−, B+] = R(a0) Infinite dimensional

Morse LIII a2 + 2aA [B−, B+] = R(a0) su(1, 1)

[B±,R(a0)] = −2a2B±
Morse PI a2 + 2aA [B−, B+] = R(a0) su(1, 1)

[B±,R(a0)] = −2a2B±
Rosen–Morse PII (A + a)2 − A2 [B−, B+] = R(a0) Infinite dimensional

+ B2

(A+a)2 − B2

A2

Rosen–Morse PI a2 + 2aA [B−, B+] = R(a0) su(1, 1)

[B±,R(a0)] = −2a2B±
Eckart PII (A − a) − A2 [B−, B+] = R(a0) Infinite dimensional

+ B2

(A−a)2 − B2

A2

Eckart PI −a2 + 2aA [B−, B+] = R(a0) su(2)

[B±,R(a0)] = +2a2B±
Pöschl–Teller I −4a2 + 4a(A + B) [B−, B+] = R(a0) su(2)

PI [B±,R(a0)] = 8a2B±
Pöschl–Teller II −4a2 + 4a(A − B) [B−, B+] = R(a0) su(1, 1)

PI [B±,R(a0)] = −8a2B±
Lévai PII A2 − (A + a)2 [B−, B+] = R(a0) Infinite dimensional

+ B2

(A+a)2 − B2

A2

SL shape invariant potentials form an algebra which is in general infinite-dimensional. The
condition these operators fulfil to define a finite algebra has been explicitly deduced. We have
given two examples which show how to construct a new SL solvable potential from an old
one. Finally, we have extended the Lévai method of constructing exactly solvable potentials
to SL problems. Twenty-three SL shape invariant potentials have been obtained. Twelve of
them are for Hermite SL-type problem, eight for Laguerre SL-type problem and three for
Legendre SL-type problem. We have also given the algebras associated with the operators
of these shape invariant potentials. Some algebras are infinite dimensional, while the others
which are finite are isomorphic to Heisenberg–Weyl, su(2) or su(1, 1) algebras.

The potentials we obtained differ from those of Dabrowska et al [18] and of Lévai [22] by
the presence of the extrapotential terms. The method we develop thus allows the investigation
of exactly solvable potentials associated with SL operators as well as it shows the way of
obtaining new exactly solvable potentials from a given old one. Besides, provided an exactly
solvable potential VSch for the Schrödinger operator, our method furnishes the corresponding
SL potential VSL as follows: VSL = Vex + VSch where Vex, the extrapotential component, is
expressed in terms of SL parameters σ and τ (83). Conversely, from a given SL exactly
solvable potential we can retrieve the corresponding Schrödinger exactly solvable potential
using equations (48)–(50).

In the forthcoming papers, we investigate the SL shape invariant potentials of the second
class for which the parameters a1 and a2 are related by scaling, SL self-similar potentials and
SL quasi-exactly solvable potentials.



390 M N Hounkonnou et al

Acknowledgments

The authors are very thankful to the referees for their remarks that help them to improve the
conclusion section of the paper. They are also grateful to the Belgian Cooperation CUD-CIUF-
UAC/IMSP and the Centre Béninois de la Recherche Scientifique et Technique (CBRST) for
their financial support.

References

[1] Morse P M 1929 Phys. Rev. 34 57
[2] Eckart C 1930 Phys. Rev. 35 1303
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